MPS-U51 (SILICON) MPS-U51A

PNP SILICON ANNULAR TRANSISTORS

 \dots . designed for complementary symmetry audio circuits to 5 Watts output.

- Excellent Current Gain Linearity 1.0 mAdc to 1.0 Adc
- Low Collector-Emitter Saturation Voltage VCE(sat) = 0.7 Vdc (Max) @ IC = 1.0 Adc
- Complements to NPN MPS-U01 and MPS-U01A
- Uniwatt Package for Excellent Thermal Properties 1.0 Watt @ T_A = 25°C

MAXIMUM RATINGS

Rating	Symbol	MPS-U51	MPS-U51A	Unit
Collector-Emitter Voltage	VCEO	30	40	Vdc
Collector-Base Voltage	VCB	40	50	Vdc
Emitter-Base Voltage	VEB	5.0		Vdc
Collector Current - Continuous	lc	2.0		Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D (1)	1.0 8.0		Watt mW/ ^O C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD (1)	10 80		Watts mW/OC
Operating and Storage Junction Temperature Range	TJ,Tstg	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	ReJÇ	12.5	oc/w
Thermal Resistance, Junction to Ambient	R ₀ JA (1)	125	oC/M

(1) $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

PNP SILICON AUDIO TRANSISTORS

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
A	9.14	9.53	0.360	0.375	
8	6.60	7.24	0.260	0.285	
C	5.41	5.66	0.213	0.223	
D	0.38	0.53	0.015	0.021	
F	3,18	3.33	0,125	0,131	
G	2.54 BSC		0.100 BSC		
H	3.94	4.19	0.155	0.185	
7	0.36	0.41	0.014	0.016	
K	12.07	12.70	0.475	0,500	
L	25.02	25.53	0.985	1.005	
N	5.08 BSC		0.200 BSC		
0	2.39	2.69	0.094	0.106	
R	1.14	1.40	0.045	0.055	

CASE 152-02

Uniwatt packages can be To-5 lead formed by adding -5 to the device title and tab formed for flush mounting by adding -1 to the device title.

MPS-U51,MPS-U51A (continued)

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage		BVCEO			Vdc
(I _C = 1.0 mAdc, I _B = 0)	MPS-U51	1	30	-	İ
	MPS-U51A		40		ļ
Collector-Base Breakdown Voltage		BVCBO		1	Vdc
(I _C = 100 μAdc, I _E = 0)	MPS-U51		40	-	
	MPS-U51A		50		L
Emitter-Base Breakdown Voltage		BVEBO	5.0	-	Vdc
$(I_E = 100 \mu\text{Adc}, I_C = 0)$		11		l	1
Collector Cutoff Current		1CBO			μAdc
(V _{CB} = 30 Vdc, I _E = 0)	MPS-U51		_	0.1	1
$(V_{CB} = 40 \text{ Vdc}, I_E = 0)$	MPS-U51A	1	-	0.1	l
Emitter Cutoff Current		¹ EBO		0.1	μAdc
$(V_{BE} = 3.0 \text{ Vdc}, I_{C} = 0)$					<u> </u>
ON CHARACTERISTICS(1)				,	
DC Current Gain	_	hFE			-
(IC = 10 mAdc, VCE = 1.0 Vdc)		1	55	_	1
(I _C = 100 mAdc, V _{CE} = 1.0 Vdc)		1 1	60	-	1
(I _C = 1.0 Adc, V _{CE} = 1.0 Vde)		<u> </u>	50		<u> </u>
Collector-Emitter Saturation Voltage		VCE (sat)		0.7	Vdc
(I _C = 1.0 Adc, I _B = 0.1 Adc)					j
Base-Emitter On Voltage		V _{BE(on)}	_	1.2	Vdc
(I _C = 1.0 Adc, V _{CE} = 1.0 Vdc)					<u> </u>
DYNAMIC CHARACTERISTICS					
Current-Gain-Bandwidth Product (1)		fT	50	"-	MHz
(I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)		1			
Output Capacitance		Cob	-	30	pF
$(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 100 \text{ kHz})$.1

⁽¹⁾ Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%.

FIGURE 1 - DC CURRENT GAIN

FIGURE 2 -- "ON" VOLTAGES

FIGURE 3 - DC SAFE OPERATING AREA

There are two limitations on the power handling ability of a transistor: junction temperature and second breakdown. Safe operating area curves indicate I_C-V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 3 is based on $T_J(p_k)=150^{\rm o}C$; T_C is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.