/* Emulator DCF77 Simulate a DCF77 radio receiver with a ESP8266, esp01 model Emit a complete three minute pulses train from the GPIO2 output the train is preceded by a single pulse ad the lacking 59° pulse to allow some clock model sincronization of the beginning frame after the three pulses train one more single pulse is sent to safely close the frame get the time from the ntp service Uses Time library to facilitate time computation Known issue: -When the DayLightSaving mode change, the three minutes packet is not checked for possible changes of hour across the frame itself, moreover the daylight saving is changed normally at 3 o clock in the morning (here in italy), while I don't correct for it so the time will be probably incorrect before at least 03:03 then dayLightSaving changes -the exact "second" precision is not guaranteed because of the semplicity of the NTP imnplementation normally the packet transit delay would be taken into account, but here is not Fuso68 05/12/2015 19/12/2015 added disconnect and reconnect if wlan fail, reconnect also after three failed ntp requests 20/12/2015 increased wlan connect timeout to 30 seconds Based upon: Udp NTP Client Get the time from a Network Time Protocol (NTP) time server Demonstrates use of UDP sendPacket and ReceivePacket For more on NTP time servers and the messages needed to communicate with them, see http://en.wikipedia.org/wiki/Network_Time_Protocol created 4 Sep 2010 by Michael Margolis modified 9 Apr 2012 by Tom Igoe updated for the ESP8266 12 Apr 2015 by Ivan Grokhotkov This code is in the public domain. */ #include #include #include #include char ssid[] = "xxxx"; // your network SSID (name) char pass[] = "xxxx"; // your network password unsigned int localPort = 2390; // local port to listen for UDP packets /* Don't hardwire the IP address or we won't get the benefits of the pool. * Lookup the IP address for the host name instead */ IPAddress timeServerIP; // time.nist.gov NTP server address const char* ntpServerName = "0.it.pool.ntp.org"; const int NTP_PACKET_SIZE = 48; // NTP time stamp is in the first 48 bytes of the message byte packetBuffer[ NTP_PACKET_SIZE]; //buffer to hold incoming and outgoing packets // A UDP instance to let us send and receive packets over UDP WiFiUDP udp; //udp reply missing counter int UdpNoReplyCounter = 0; //routine timer ogni 100 msec Ticker DcfOutTimer; #define LedPin 2 //how many total pulses we have //three coimplete minutes + 2 head pulses and one tail pulse #define MaxPulseNumber 183 #define FirstMinutePulseBegin 2 #define SecondMinutePulseBegin 62 #define ThirdMinutePulseBegin 122 //complete array of pulses for three minutes //0 = no pulse, 1=100msec, 2=200msec int ArrayImpulsi[MaxPulseNumber]; int ContaImpulsi = 0; int UscitaDcfOn = 0; int ContaImpulsiParziale = 0; int Ore,Minuti,Secondi,Giorno,Mese,Anno,DayOfW; const int timeZone = 1; // Central European Time int Dls; //DayLightSaving void setup() { Serial.begin(115200); Serial.println(); Serial.println("DCF77 emulator INIT"); pinMode(LedPin, OUTPUT); digitalWrite(LedPin, LOW); //gestione inpulsi DCF DcfOutTimer.attach_ms(100, DcfOut); //first 2 pulses: 1 + blank to simulate the packet beginning //il primo bit e' un 1 ArrayImpulsi[0] = 1; //segue l'impulso mancante che indica il sincronismo di ricerca inizio minuto ArrayImpulsi[1] = 0; //last pulse after the third 59° blank ArrayImpulsi[MaxPulseNumber - 1] = 1; ContaImpulsi = 0; UscitaDcfOn = 0; //we begin with the output OFF //we begin connecting to wifi //NOTE testing WiFi.status() BEFORE the FIRST WiFi.begin() seems to hang the system //so we attempt a first connection BEFORE the main loop ConnettiWifi(); } void loop(){ //check the lan status if (WiFi.status() == WL_CONNECTED) LeggiEdecodificaTempo(); else ConnettiWifi(); delay(60000); } void ConnettiWifi(){ int Timeout; WiFi.disconnect(); Serial.println("disconnessione !"); delay(1000); //necessary ??? Serial.print("Connecting to "); Serial.println(ssid); WiFi.begin(ssid, pass); Timeout = 0; while (WiFi.status() != WL_CONNECTED) { delay(500); Serial.print("."); if (Timeout++ > 60){ Serial.println("\nImpossible to connect WLAN!"); WiFi.disconnect(); return; } }; Serial.println(""); Serial.println("WiFi connected"); Serial.println("IP address: "); Serial.println(WiFi.localIP()); } void LeggiEdecodificaTempo() { int DayToEndOfMonth,DayOfWeekToEnd,DayOfWeekToSunday; //get a random server from the pool WiFi.hostByName(ntpServerName, timeServerIP); Serial.println("Starting UDP"); udp.begin(localPort); Serial.print("Local port: "); Serial.println(udp.localPort()); sendNTPpacket(timeServerIP); // send an NTP packet to a time server // wait to see if a reply is available delay(1000); int cb = udp.parsePacket(); if (!cb) { Serial.println("no packet yet"); //try max 3 times (every minute) after that we force the wifi to reconnect if (UdpNoReplyCounter++ == 3){ Serial.println("troppi errori di reply udp"); ConnettiWifi(); UdpNoReplyCounter = 0; }; } else { UdpNoReplyCounter = 0; Serial.print("packet received, length="); Serial.println(cb); // We've received a packet, read the data from it udp.read(packetBuffer, NTP_PACKET_SIZE); // read the packet into the buffer //the timestamp starts at byte 40 of the received packet and is four bytes, // or two words, long. First, esxtract the two words: unsigned long highWord = word(packetBuffer[40], packetBuffer[41]); unsigned long lowWord = word(packetBuffer[42], packetBuffer[43]); // combine the four bytes (two words) into a long integer // this is NTP time (seconds since Jan 1 1900): unsigned long secsSince1900 = highWord << 16 | lowWord; Serial.print("Seconds since Jan 1 1900 = " ); Serial.println(secsSince1900); // now convert NTP time into everyday time: Serial.print("Unix time = "); // Unix time starts on Jan 1 1970. In seconds, that's 2208988800: const unsigned long seventyYears = 2208988800UL; // subtract seventy years: //note: we add two minutes because the dcf protocol send the time of the FOLLOWING minute //and our transmissione begin the next minute more time_t epoch = secsSince1900 - seventyYears + ( timeZone * 3600 ) + 120; // print Unix time: Serial.println(epoch); //calculate actual day to evaluate the summer/winter time of day ligh saving DayOfW = weekday(epoch); Giorno = day(epoch); Mese = month(epoch); Anno = year(epoch); Serial.print("Tempo Locale "); // UTC is the time at Greenwich Meridian (GMT) Serial.print(Giorno); Serial.print('/'); Serial.print(Mese); Serial.print('/'); Serial.print(Anno); Serial.print(' '); //calcolo ora solare o legale Dls = 0; //default winter time //From April to september we are surely on summer time if (Mese > 3 && Mese < 10) { Dls = 1; }; //March, month of change winter->summer time, last last sunday of the month //March has 31days so from 25 included on sunday we can be in summer time if (Mese == 3 && Giorno > 24) { DayToEndOfMonth = 31 - Giorno; DayOfWeekToSunday = 7 - DayOfW; if (DayOfWeekToSunday >= DayToEndOfMonth) Dls = 1; }; //Octobee, month of change summer->winter time, l'ultima Domenica del mese //Even Octobee has 31days so from 25 included on sunday we can be in winter time if (Mese == 10) { Dls = 1; if (Giorno > 24) { DayToEndOfMonth = 31 - Giorno; DayOfWeekToEnd = 7 - DayOfW; if (DayOfWeekToEnd >= DayToEndOfMonth) Dls = 0; }; }; Serial.print("Dls:"); Serial.print(Dls); Serial.print(' '); //add one hour if we are in summer time if (Dls == 1) epoch += 3600; //now that we know the dls state, we can calculate the time too // print the hour, minute and second: Ore = hour(epoch); Minuti = minute(epoch); Secondi = second(epoch); Serial.print(Ore); // print the hour Serial.print(':'); Serial.print(Minuti); // print the minute Serial.print(':'); Serial.println(Secondi); // print the second //if we are over about the 56° second we risk to begin the pulses too late, so it's better //to skit at the half of the next minute and NTP+recalculate all again if (Secondi > 56){ delay(30000); return; } //calculate bits array for the first minute CalcolaArray(FirstMinutePulseBegin); //add one minute ad calculate array again fot the second minute epoch += 60; DayOfW = weekday(epoch); Giorno = day(epoch); Mese = month(epoch); Anno = year(epoch); Ore = hour(epoch); Minuti = minute(epoch); Secondi = second(epoch); CalcolaArray(SecondMinutePulseBegin); //one minute more for the third minute epoch += 60; DayOfW = weekday(epoch); Giorno = day(epoch); Mese = month(epoch); Anno = year(epoch); Ore = hour(epoch); Minuti = minute(epoch); Secondi = second(epoch); CalcolaArray(ThirdMinutePulseBegin); //how many to the minute end ? //don't forget that we begin transmission at second 58° int DaPerdere = 58 - Secondi; delay(DaPerdere * 1000); //begin UscitaDcfOn = 1; //three minutes are needed to transmit all the packet //then wait more 30 secs to locate safely at the half of minute //NB 150+60=210sec, 60secs are lost from main routine delay(150000); }; udp.stop() ; } void CalcolaArray(int ArrayOffset) { int n,Tmp,TmpIn; int ParityCount = 0; //i primi 20 bits di ogni minuto li mettiamo a valore logico zero for (n=0;n<20;n++) ArrayImpulsi[n+ArrayOffset] = 1; //DayLightSaving bit if (Dls == 1) ArrayImpulsi[17+ArrayOffset] == 2; else ArrayImpulsi[18+ArrayOffset] == 2; //il bit 20 deve essere 1 per indicare tempo attivo ArrayImpulsi[20+ArrayOffset] = 2; //calcola i bits per il minuto TmpIn = Bin2Bcd(Minuti); for (n=21;n<28;n++) { Tmp = TmpIn & 1; ArrayImpulsi[n+ArrayOffset] = Tmp + 1; ParityCount += Tmp; TmpIn >>= 1; }; if ((ParityCount & 1) == 0) ArrayImpulsi[28+ArrayOffset] = 1; else ArrayImpulsi[28+ArrayOffset] = 2; //calcola i bits per le ore ParityCount = 0; TmpIn = Bin2Bcd(Ore); for (n=29;n<35;n++) { Tmp = TmpIn & 1; ArrayImpulsi[n+ArrayOffset] = Tmp + 1; ParityCount += Tmp; TmpIn >>= 1; } if ((ParityCount & 1) == 0) ArrayImpulsi[35+ArrayOffset] = 1; else ArrayImpulsi[35+ArrayOffset] = 2; ParityCount = 0; //calcola i bits per il giorno TmpIn = Bin2Bcd(Giorno); for (n=36;n<42;n++) { Tmp = TmpIn & 1; ArrayImpulsi[n+ArrayOffset] = Tmp + 1; ParityCount += Tmp; TmpIn >>= 1; } //calcola i bits per il giorno della settimana TmpIn = Bin2Bcd(DayOfW); for (n=42;n<45;n++) { Tmp = TmpIn & 1; ArrayImpulsi[n+ArrayOffset] = Tmp + 1; ParityCount += Tmp; TmpIn >>= 1; } //calcola i bits per il mese TmpIn = Bin2Bcd(Mese); for (n=45;n<50;n++) { Tmp = TmpIn & 1; ArrayImpulsi[n+ArrayOffset] = Tmp + 1; ParityCount += Tmp; TmpIn >>= 1; } //calcola i bits per l'anno TmpIn = Bin2Bcd(Anno - 2000); //a noi interesa solo l'anno con ... il millenniumbug ! for (n=50;n<58;n++) { Tmp = TmpIn & 1; ArrayImpulsi[n+ArrayOffset] = Tmp + 1; ParityCount += Tmp; TmpIn >>= 1; } //parita' di data if ((ParityCount & 1) == 0) ArrayImpulsi[58+ArrayOffset] = 1; else ArrayImpulsi[58+ArrayOffset] = 2; //ultimo impulso mancante ArrayImpulsi[59+ArrayOffset] = 0; /* for debug: print the whole 180 secs array * Serial.print(':'); for (n=0;n<60;n++) Serial.print(ArrayImpulsi[n+ArrayOffset]);*/ } // send an NTP request to the time server at the given address unsigned long sendNTPpacket(IPAddress& address) { Serial.println("sending NTP packet..."); // set all bytes in the buffer to 0 memset(packetBuffer, 0, NTP_PACKET_SIZE); // Initialize values needed to form NTP request // (see URL above for details on the packets) packetBuffer[0] = 0b11100011; // LI, Version, Mode packetBuffer[1] = 0; // Stratum, or type of clock packetBuffer[2] = 6; // Polling Interval packetBuffer[3] = 0xEC; // Peer Clock Precision // 8 bytes of zero for Root Delay & Root Dispersion packetBuffer[12] = 49; packetBuffer[13] = 0x4E; packetBuffer[14] = 49; packetBuffer[15] = 52; // all NTP fields have been given values, now // you can send a packet requesting a timestamp: udp.beginPacket(address, 123); //NTP requests are to port 123 udp.write(packetBuffer, NTP_PACKET_SIZE); udp.endPacket(); } //richiamata ciclicamente ogni 100msec //per uscita di simulazione DFC77 void DcfOut() { if (UscitaDcfOn == 1) { switch (ContaImpulsiParziale++) { case 0: if (ArrayImpulsi[ContaImpulsi] != 0) digitalWrite(LedPin, 1); break; case 1: if (ArrayImpulsi[ContaImpulsi] == 1) digitalWrite(LedPin, 0); break; case 2: digitalWrite(LedPin, 0); break; case 9: if (ContaImpulsi++ == (MaxPulseNumber -1 )){ //one less because we FIRST tx the pulse THEN count it ContaImpulsi = 0; UscitaDcfOn = 0; }; ContaImpulsiParziale = 0; break; }; }; } int Bin2Bcd(int dato) { int msb,lsb; if (dato < 10) return dato; msb = (dato / 10) << 4; lsb = dato % 10; return msb + lsb; }